Symbol Synchronizer Assembly Instability Study

R. C. Bunce
Network Operations Office

This first part of a two-part analysis describes the unstable operation of the
Symbol Synchronizer Assembly (SSA) in the narrow-narrow configuration at 8%
bits/s. Reduction of a data set signal-to-noise (dB) vs. time indicates that the
SSA is cycling between unstable lock conditions and entirely out-of-lock or ramp
conditions. The ramp condition is so called because a strong second-order fre-
quency term or linear drift becomes obvious. The drift magnitude is far beyond
loop tracking capability and even marginal when a data rate of 33Y4 bits/s is used.
The data indicates a possible third-order term, noted casually in other unprocessed
sets. Based on the ramp magnitude, it is finally recommended that bandwidths
less than 0.01 Hz (design point) be avoided. Also, an outline is given of Part II,
which extends the study to analyze the third-order possibility and will upgrade
early results through sophisticated machine programming of statistical and itera-

tive manipulations.

l. Introduction

The DSN Station symbol synchronizor assembly (SSA)
performs according to design under all normally recom-
mended operating conditions. However, the equipment
contains operationally programmable configurations, out-
side of the recommended states, that result in unstable
behavior.

Specifically, the predominant configuration leading to
instability occurs when the narrowest bandwidth instruc-
tion (narrow-narrow) is combined with the lowest norm-
ally operational symbol rate (8% bits/s). An increase
in either the bandwidth instruction (to narrow-medium)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

or use of a higher symbol rate (nominal 33% bits/s)
usually relieves the instability.

Causes of the instability are not well understood. The
stable operational threshold with respect to both band-
width configuration and the product with input symbol
rate is presently undefined.

The purpose of this analysis is to determine the mag-.
nitude of the instability parameters (by data reduction,
particularly, raw points of signal-to-noise vs time), and,
based on this analysis, state quantitative expressions
that define the minimum stable SSA operating conditions,
finally translated to a stable range of input instructions.
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The analysis is in two parts. Part One develops
elementary models of the unstable conditions and uses
these to reduce a single data set to arrive at a prelim-
inary second-order estimate of one of the parameters
causing the unstable behavior and its effect on stable
operational minimums. Approximate expressions are used
to form the preliminary model.

Part Two, now being performed will generalize the
reduction of a number of data sets, exhibiting various
modes of instability to third order (prelock and lock,
periodic, divergent) to bound the extent of the casual
parameters and their source. More sophisticated expres-
sions (particularly the relation between signal-to-noise
in decibels and integrated phase processes) will be used,
and best-estimate minimal stable operational conditions,
statistically bounded, will be recommended.

II. SSA Data and Modes

This discussion will be limited to a single data set
taken at CTA 21 in February, using the “narrow-narrow”
81 bps condition, within which the instability is most
pronounced. This unstable behavior is apparently not
directly related to input signal-to-noise ratio, measured
in decibels (S/N), but rather due to independent internal
effects. When S/N is large, the instability effect remains
unchanged.! The SSA acts nominally as a normal second-
order phase-lock-loop.

Initial thoughts were that the instability was simple
oscillator low-frequency 1/f noise, and could be treated
as such; this noise form is common with very narrow
phase-lock-loops, independent of input S/N, and in
narrow-narrow, 8% condition, the SSA design loop
bandwidth is only 0.00125 Hz.

Data Set No. 1, S/N vs time, plotted in Fig. 1, is
typical. Data was taken with straight square-wave input
signals at S/N of about 17 dB. It is immediately appar-
ent that the data is not random, but deterministic, except
for obvious minor first-order noise effects. It can be fit
(piecewise) to some kind of deterministic model or
curve set, except possibly around the null points. This
does not mean that the data is not statistical in the long
run; whatever is causing the variations (probably tem-
perature effects on local oscillators) may change state,
or otherwise vary randomly at large intervals. The ques-

1§/N data amplitude follows the signal level, but the time-depen-
dent form of the instability process does not change appreciably
with this amplitude.
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tion is philosophical; the given data set, observed over
a relatively short time period (with respect to bandwidth
reciprocal) shows a deterministic trend or pattern. Low-
frequency noise statistics must be abandoned; we are
observing effects from a single, causal, and directly
determinable time-dependent source.

The most informative feature in Fig. 1 is the presence
of nulls, The SSA S/N measurement set is obtained by
integrating across sequential symbol periods and sum-
ming results; a null could happen only if transitions
occurred near the half-way point through a symbol
period, a phase error of % cycle, or 90 deg. This is well
outside the SSA loop control range. The instability is
an “in-loop-control”—“out-of-loop-control” phenomenon.?
The control range (the phase-detector integral) is only
= Vs cycle, or + 22.5 deg.

The 22.5 deg range leads immediately to another con-
clusion: if the actual input S/N is stable and has a peak
value at 0 deg, and if the S/N (average) drops by 2.48
dB, loop control is lost. This is somewhat distorted by
S/N summation effects; but, in general, the loop is not
fully active if the S/N is less than 2.48 dB below peak.
The figure is simply the loop S/N mean integrator output
at == 22.5 deg or ¥ cycle, from zero phase error.

It is, therefore, obvious that the disturbing force under
the stated conditions is sufficient that the loop cannot
hold control; i.e., maintain lock. The most causal param-
eter to do this in = second-order-loop is a frequency
ramp with magnitude beyond the tracking range.
Although various spotty but observed data sets, includ-
ing Set No. 1, have shown possible higher-order com-
ponents, Data Set No. 1 (even intuitively) shows a
strong second-order parabolic curvature. Higher-order
components of significance cause multiple nulls, or, at
Jeast, successive inflections. These are minor in Data
Set No. 1. See Appendix for additional discussion.

The predominant question of Fig. 1 is whether or not
the signal reentered loop control at the central peak.
If it did not, then the frequency turned over, due to
the frequency ramp, and reentered negatively following
the next null. If it did reenter, then the S/N must have
been variable, with a peak of only 14 dB in the central
region, or data points at the peak were missed. Consider

2Some would say “in-lock”—“out-of-lock”. However, if lock is de-
fined as a zero or steady-state phase error, the loop simply “has
control” or “is out of control.” When it can’t “handle” the signal,
it is never “in lock™.
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the first hypothesis above to be Mode I and the second
Mode II. The S/N data cannot resolve this, for SSA S/N
reduction is based on absolute values, and the sign of
the error phase is indeterminate. This leads to the dis-
cussion of S/N as an indicator of phase.

l1l. SSA Signal-to-Noise (dB) to
Phase Conversion

The SSA S/N readout results from processing of the
summation of the absolute values (and their squares) of
a set of measures obtained by integration over the sym-
bol period. The result is simply the square of the mean
measure (signal estimate, watts) over its variance (noise
estimate, watts). It would be accurate, except that
absoluting the mecasures causes a de offset by noise, an
incscapable error. The error becomes significant if the
integrated signal component approaches the noise com-
ponent. The measure then becomes nearly indeterminate;
all outputs approximate 0 dB with little quantitative
information possible. In general, when the SSA S/N
readout is below 3 dB the number is indefinite and
becomes nearly meaningless at about 1.0 dB. Detailed
mathematics are omitted at this time, as the algorithm
problems in the area are well known. It is handled here
simply by disregarding one point of low S/N data; the
point, at 0.4 dB, was obviously inaccurate. Under high
S/N conditions, the S/N integral is directly proportional
to the phase error across a single quadrant. The true
signal level is measured at zero phase error, while the
null occurs at ' cycle of phase error, or 90 deg, when
the transition is at the integral mid-point and the two
halves cancel. Thus, the elementary reduction of S/N

to phase is
fi-wew| - (Z557) |

ey

»Jklr-—\

P
o) =n o=

where
#(t) = phase estimate with time-tag ¢.
DBX = system S/N, dB: the peak observed value.
DB(t) = S/N readout at time t.

, = = index and sign choice to fix $ according to
selected mode estimate.

n

For data set No. 1, n, sign, and DBX were chosen as fol-
lows; see Figure 1 for null and peak position (¢t = T).
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A plot of data set Number 1, both modes, and reduced
to phase equivalents by Eq. (1) and Table 1, is shown in
Fig. 2. This was the basic working data model for Part 1.
Note uncertainty regions near nulls, and also the very
narrow loop periods; the signal is out of loop control
for the majority of the time. The most significant and
unambiguous region is the long-ramp section between
400 and 600 s. Except for sign, this section is indepen-
dent of mode, and was finally the prime data field used
for analysis.

Since actual S/N readout is the result of summation
over an S/N interval (30 s), Expression (1) can only be
approximate. The actual phase representing a given
readout is some median value within the summation,
and occurs at some variable time in this period. How-
ever, without parameter estimates for the data model,
corrections are impossible; in turn, parameter estimates
depend on phase points. An iteration process is indi-
cated, and a program for this is under way for use in
Part II. Also, pure phase jitter, insignificant during loop
periods, is not negligible in ramp periods, when loop
teed-back does not control it. The program covering
these effects is quite complicated, and its initial form
was lost through computer malfunction before meaning-
ful additional data sets could be obtained. However,
Expression (1), with suitable initial correction near nulls
for both the S/N algorithm and inherent phase jitter,
was the first program step and is probably accurate
within a few degrees, except near nulls.

Data Set No. 1, as reduced, showed, regardless of
mode, an apparently fairly constant frequency during
the out-of-loop-control, or ramp periods. However, an
investigation of the data derivative, particularly in the
indicated ramp period between 400 and 600 s, revealed
an undeniable and relatively large second-order fre-
quency term, or F, and, (although the data was insuffi-
cient) even gave indications of a mild third-order process
(to be disregarded at this time). Based on the strong
ramp term, the hypothesis was established that the SSA
voltage-controlled oscillator (VCO) (synthesizer sweep
oscillator) was drifting. The Part 1 models for this
internal ramp drift follow.

IV. SSA Phase-Lock Loop With Frequency
Drift Models

The SSA is finally an ordinary second-order optimized
loop with very narrow-band capability, and perfect
integrator.
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Under strong-signal input conditions (the only condi-
tions of this study), the phase detector function (a combi-
nation of digital logic and analog-to-digital conversion
of an integral) is linear over the range +%s cycle, or
+22.5 deg; a cycle period being two symbol periods.

When the phase error exceeds the above limits, the
phase detector output becomes a nominal constant until
the phase error has increased to a point very close to null,
+% cycle (see Appendix for variations). The output is
then indeterminate for a few degrees, emerging again as
constant, but with reverse polarity; the loop turns over
while passing through a null. Beyond 22.5 deg, the loop
exercises no phase jitter control.?

Ordinarily, the detector null flip-flop condition would
be a strong restoring force for loop lock. The VCO
frequency differential reverses, and the ramp maximum
component polarity reverses, driving the loop toward sub-
sequent lock. Such F changes were not, however, dis-
cernible in the data, and it was concluded that they must
be masked by the large internal source. However, for
theoretical purposes, we include both in the models;
under certain central conditions, the frequency-shift is
significant and time-dependent.

A second-order phase-lock loop with internal drift has
well known solutions; we assume the input signal to be
a stable square-wave at phase zero.

The loop model with constant internal frequency drift,
applying when the phase error is in control range, has
the S-plane form:

S¢0_F0_Fo/s

®(s) = RN PR @)

¢, = initial phase error, cycles (+1/16)
F, = initial frequency offset from center, Hz

F, = (constant) drift rate, Hz/s

a, b = loop constants at operating point

Time solutions of Eq. (2) contain linear, exponential, and
trigonometric terms, and vary with gain (a function of
operating point). To simplify this initial part one study,
data were taken in the region where parameter b is zero
(unity damping); “a” is then o, or just “w,” nominally

3Transitions, the time expression of phase, occur outside the phase
detector gate, so their position cannot be included in loop feedback.
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4/3 o, * o, is the design bandwidth. The time solution for
Eq. (2) is then free of trigonometric terms:

3(t) [3=0 = [(1 — wt)e-2D] ¢ — _tlo_ [(ot)e-*P]F,

- ;1; [1—(1— ot)et-20]F, (8a)

The ramp model is elementary; expressed as step
functions:

Bt) = ¢ + (Fo = AF) t + (Fo = aAF)- . (3b)

t = (T — T(¢4!)): time “in the run”
8
AF = ¢, 0? = 0?/16

AF = 2wd>L =

=+ = sign, as required for restoring lock.

Eq. (3b) was applied to the long-ramp data in Fig. 2,
by least squares fit, and the frequency and rate constants
were found to be in excess of F and F maximums, as
expected. The loop model, Eq. (3a), was also applied,
using the ramp results, to the few data points available.
The errors were less than two degrees, but these loop
results can obviously not be termed conclusive, for loop
error variance was not within any kind of normal limits
for the three points (25 deg). The ramp results are, how-
ever, significant, particularly when the indicated indefi-
nite null point was omitted. Results follow.

V. Concluding Expressions

It is obvious why the SSA cannot hold lock—the in-
ternal drift is excessive in the narrowest bandwidth con-
dition. In this condition, least squares fit under two
conditions (using or omitting the final ramp point) were:

|F| = [4-132 = 0.68] X 10 Hz/s

Phase error rms of the fits was only 0.69 deg, making
the +0.68 approximately a one-sigma figure.

To track this requires:

oyixy = [16 X F.'Dbse,ved]‘/’ = 0.0081 Hz minimum
(4)
At the 8% bit/s rate, the bandwidth is 0.00167, well out
of range. However, at a bit rate of 33% bit/s, the equiva-
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lent design bandwidth is 0.007, and tracking of the
observed ramp is marginal at the higher-gain operating
points. For a safety factor in the presence of the above
ramp, it is recommended that, for stable operation, SSA
conditions be chosen such that, at design point (at least
for Compatibility Test Area (CTA 21) equipment):

0y > 0.01 Hz (5)

To speculate on the source of the observed ramp is
probably not valid; the ramp is there, its effects are part
of each SSA installation, and it limits operating condi-
tions. The probable third-order term, should it prove
sizable, leaves the SSA with lock-drop potential under all
conditions, except that time periods could be very long.

It is interesting to note that the synthesizer manufac-
turer’s specification for the internal sweep calculator is:

Frequency drift in 10 min = +50 Hz, maximum
(6)

If this is divided by 10¢ as apparently occurs in the
narrow-narrow SSA configuration, the result is a ramp of:

65% X 10~ = 8.33 X 10-¢ Hz/sec maximum

This is roughly twice the observed value.

VI. Part Two Outline

The ramp figures above are quite preliminary. To gain
confidence in this parameter and its extensions, such as
third and/or possibly higher-order terms, work under way
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on a much more sophisticated approach will be contin-
ued. This includes:

(1) Gathering of additional data sets exhibiting all
modes.

(2) Coordinating parameter data through a series of
loop-ramp cycles, using a generalized rms mini-
mization program, to obtain ramp, rate, and higher-
order data results with low variance, particularly
during loop runs.

(3) In conjunction with (2), iterate phase vs S/N data
through the S/N algorithm model to minimize the
phase and time reduction errors,

(4) Determine the variation of the disturbing parame-
ters between data sets, and their possible effect on
data degradation under full in-lock conditions.

The expressions for the above steps are summarized
in the Appendix.

Vil. Summary

The SSA loop exhibits internal frequency instabilities;
it has been estimated by ramp-period analysis at 25 times
the maximum tracking rate in “narrow-narrow 8%” con-
figuration, and only marginally in range if the bit rate is
33%. A third-order component may also be present.

Recommended minimum tracking bandwidth is 0.01 Hz,
design point.

Part Two will extend these results and generalize oper-
ational limitations due to simple drift.
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Table 1. Data set no. 1 phase conversion constants

Region Mode Sign n DBX @, deg
T < First null s T 0 s B3 %
~
First peak > T > first null III _ i izg gg Z% Z ;gg
Second null > T > first peak III i (1) 313 igg :g 2 3(7)0
Second pesk > T > second nul ! * 2 160 70 <2< o0
T > second peak III I_ (2) i;?) ;:; ; g60
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Fig. 1. SSA data set No. 1, CTA-21, March 1975. N-M bits/s raw data
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Appendix

Program Models

Discussion begins at Part II of Fig. A-1. Let:

F,(t) loop (exponential/trigonometric)

¢'(t) = ;

| Fy(t) ramp (polynomial)

Assume initial parameter estimates are available from

ramp polynomial analysis. A “set” is one ramp-loop cycle.
If phase noise is significant (ramp):

$"(t) = \/gmp exp[— %(W(t)/w)?]

+ ¢'(t) ~erf (¢ /\/§a¢

~— 1 . ——l
7~4 N\ R-ef(R)

R = system (max) S/N power ratio
If phase noise is insignificant:
¢"(t) = ¢'(t)
For use in §/N reduction:
¢(t) = |1 —4+|¢"(t) + ¢ml|0 < o(2)

¢ effects covered above to obtain the phase noise mean.
The S/N detector integral can be stated as (square-wave
input):

To, —AT+2¢(TCi)+ AT
/ (Vi) + ()] de
T

0, —AT

To,
-/ [IVi(t)] - n(e)] de
Ty, ~AT+2¢(TC;)+ AT

TC; = zero-crossing time; ¢(TC;) and TC; require
closure in ¢'(t) and ¢”(¢).

Yi =

T,, = completion time of the integral

1

= T; at completion of sample set (final value)
T, =T; — (N — i) Ar
V; = signal voltage @ T,, — Ar, reversing polarity
@ TC;, where phase value causes a step-

function (assuming uncoded square-wave
input)
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A7 = symbol period
(Tjn) = T
A

T

N = number of symbols/samples:

When ¢(t) is variable, the moment solutions must neces-
sarily carry a summation. The first two moments, taken
over the S/N summation period, become extensions of
well-known absolute value integrals:

X(T)) { ZY}

Il

X5 {\E -exp — R[$(TC,)]*

i=1

+ 2yR$(TC,) ext [\/MTC,-)]}

(2R-¢(TC;) + 1)

)= el T - K 5

NaAr = TC = summation period (30 s)

N, A
o T N, the noise spectral density

T; = time of the readout time for the jth
S/N measure

When S/N is high, as in this study (except for uncertainty
around nulls), the two moments are sufficient. They com-
bine to yield the S/N estimate:

Xy _ 7
L xayye Y

(STN); =
2AY(T;) —

A given phase cannot be associated with this S/N. It
represents summation over functions of the #(TC;), an
entire section of the model curves:

&(T; — 7G) < $(S/N) < ¢(T))

For program use, three values were selected:

¢'(T; — +G)
A
(S/N)(T;) represents{ ¢'(T; — 1G/2)
¢'(T;)
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Since S/N is predominantly an amplitude function, the
difference between model results and data allowed origi-
nal data estimates to be modified linearly:

s N DATA v
¢hata (£) :l}((g—;_ﬁ))—(ﬂ] p)T; —TG<t<T;

$hara, three values, the replacement for former ¢’. This
provided data for phase iteration. The S/N to phase con-
version above was the second and higher generation
process; the original is covered in Part One.

To determine result quality, the S/N difference be-
tween data and model, scaled to the system S/N maxi-
mum ratio, was reduced to an rms value:

Y N i, DATA — i, MODEL 2
I Z[\m Jovszs — V7N ]

1

N & (S/N)SYSTEM

At each iteration, the “ramp” data was first subjected to
a third-order fit and then, for each associated ramp-loop
sequence, the entire parameter set was adjusted for the
minimum mean-square condition by machine (small 3AV’s
measured for each small “J parameter” at each point)

\/(S/N)i, DATA \/(S/N)i, MODEL

AV, = S
V (S/N)SYSTEM
B I n oAV, AF. + oAV AR
YT Taee A% TR, AT TR,
2AV, . 2AV; 2
+ ——AF, + 3 'Am—AVi]
0 «
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This leads to a system of simultaneous minimization
equations from which parameter adjustments can be
made. At completion, phases are readjusted and the pro-
cess continued until no further reduction in RMS could
be obtained.

Except on an exploratory basis, the above process has
not yet been used. Additional data is required.

It remains to consolidate the program, set error mea-
sures, and bound applicability of results. This will be
done in Part Two. Also, the following effect may be
incorporated:

Phase Detector: Output Variation

In Part One, the effect of phase detector “flip-flop” at
nulls was neglected, since the observed ramp magnitude
far exceeded the maximum VCO ramp. However, the
frequency changes are not as insignificant; the full “turn-
over” has the maximum final value:

|AFMAXl:2.c.“).

Ag|=4-10~Hz

This is a peak value at loop entry/exit; the actual value
is noise dependent and nonlinear, being zero mean at the
null.

Since actual observed frequencies fell between 10 X< 10+
and 18 X 10-* Hz, this effect is significant in certain
regions. The pending third-order model may “absorb” it,
or, if it proves necessary, full phase detector noise theory
in ramp regions may be applied.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28



RAW SET DATA
S/N (dB) vs TIME

D
(ONE RAMP AND INITIAL $/N TO PHASE CONVERSION RAW DATA
ONE LOOP) AND
MODE ESTIMATES
~ ~ [RAMP _/V/
¢ M {LOOP —
RAW DATA STATE
(RAMP/LOOP) START- RAMP 2nd/3rd ORDER LEAST-
TIME ESTIMATES SQUARES FIT AND SOLUTION
FOR RAMP AND LOOP [NPUT
POLYNOMINAL PARAMETERS
OUTER
LOO ol Fol Fol % ¢g| Fol 4l Fo oAkt
RAMP LOOP ONE
__._____—___._____________—._______.__.___|
PART
DATA ?T No., ™o
b P Fol l
T T g MODEL S/N (T) CALCULATIONS
0r i AND MODEL/DATA RMS
COMPUTATION.
DIFFERENTIAL DATA/MODEL AV (T)
COMPUTE NEW
~ A,
3 (%) vALUES |
FROM MODE} ]
AND DATA S/N (T
M RESULT FLAG[  ppms MINIMUM IMPROVING OR NOT YES
IMPROVING ? (EXTERNAL DECISION)
NO
av (1)
VARY PARAMETERS TO RAMP + LOQP
INNER OPERATING POINT: ¢, Fo, Fo,Fy,
LOOP Tos Tgs w. ADJUST TO MINIMIZE
RMS ( V2)
NO RMS SATISFACTORY ?
(EXTERNAL DECISION)
YES
PRINT FINAL PARAMETERS AND
VARIANCES, COMPARE
STATISTICALLY WITH OTHER SETS
CHOOSE ‘
NEXT SET ONTINUE
OR MODIFY < CONTINUE OR COMPLETE? COMPLETE | tnb
MODE
ESTIMATES

Fig. A-1. Machine data reduction plan, Part Il SSA instability study
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